Math 1663 W

Wednesday 25 October 2023

dr Adam Abrams

One possible answer is $y=\frac{1}{2} x+\frac{7}{2}$, but this takes a little work (to find $b=7 / 2$).

Easier answer:
$y=6+\frac{1}{2}(x-3)$
See lasks 8-16
from List 0 .

Limits of functions

For functions, $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ are very similar to limits of sequences.
Functions can also have limits at a point.

- $\lim f(x)$ is a two-sided limit, also just called a limit. $x \rightarrow a$
- $\lim _{x \rightarrow a^{-}} f(x)$ is a limit from the left $(x<a)$, also called from below. $x \rightarrow a^{-}$
- $\lim _{x \rightarrow a^{+}} f(x)$ is a limit from the right $(x>a)$, also called from above.

It's possible for $\lim f(x)$ to be completely unrelated to the value $f(a)$. $x \rightarrow a$

But for many functions we can calculate limits just by finding the value of the function at the point:

$$
\lim _{x \rightarrow 7} \frac{x^{2}+1}{x^{2}-2}=\frac{7^{2}+1}{7^{2}-1}=\frac{50}{47}
$$

When exactly this is allowed brings us to the idea of "continuity".

Continuity

Informally, a continuous function is one with no holes, jumps, or asymptotes in its graph. This means you could draw its graph without picking up your pen or pencil.

Continuily

Let $f(x)$ be a function and let p be a number.
We say " f is continuous at p " if all of these are true:

1. $f(p)$ is defined,
2. $\lim f(x)$ exists, $x \rightarrow p$
3. $\lim f(x)=f(p)$.
$x \rightarrow p$

If any of these is false, f is discontinuous.
What can discontinuity look like?

Types of discontinuities

The graph $y=f(x)$ has a jump at $x=a$ if

1. $\lim _{x \rightarrow a^{-}} f(x)$ is finite, and
2. $\lim _{x \rightarrow a^{+}} f(x)$ is finite, and
3. $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$.
(drawings on
board during
class)

The graph $y=f(x)$ has a hole at $x=a$ if

1. $\lim f(x)$ is finite and

$$
x \rightarrow a^{a}
$$

2. $f(a)$ is not defined or $f(a) \neq \lim _{x \rightarrow a} f(x)$.

Types of discontinuities

The vertical line $x=a$ is a vertical asymptote of the graph $y=f(x)$ if at least one of the following are true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a^{-}} f(x)=-\infty & \text { or } & \lim _{x \rightarrow a^{+}} f(x)=-\infty \\
\lim _{x \rightarrow a^{-}} f(x)=+\infty & \text { or } \\
& \text { or } & \lim _{x \rightarrow a^{+}} f(x)=+\infty .
\end{array}
$$

Note: a horizontal asymptote ($\lim _{x \rightarrow \infty}=L$ or $\lim _{x \rightarrow-\infty}=L$) has nothing to do with
discontinuity. discontinuity.

Task 1: Describe the discontinuities of $f(x)=\frac{(x+7)(x-3)}{(x+2)(x-3)}$.

Hole at $x=3$.
Vertical asymptote at $x=-2$.
(There is also a horizontal asymptote at $y=1$ and a "zero" at $x=-7$, but the task does not ask about these.)

Why talk about limits when we can just ask a computer to graph a function?

$$
y=\frac{100 x^{2}+100}{100 x^{3}+100 x}
$$

$$
y=\frac{100 x^{2}}{100 x^{3}+x}
$$

Using limits, we can see that the left graph has an asymptote, right has a hole.

Task 2: What is $\lim _{x \rightarrow 6^{-}} f(x)$ for the function below?

Continuily

Our previous definition describes when a function is continuous at a point.

We say " f is continuous on the interval $[a, b]$ " if it is continuous at all points p for which $a \leq p \leq b$.

- We can also talk about open intervals (a, b), semi-open intervals $[a, b)$ or $(a, b]$, and infinite intervals like $[a, \infty)$.

We say " f is continuous everywhere" or " f is continuous" or " f is a continuous function" if it is continuous at all points.

Continuiky

Important examples:

- Any polynomial is continuous.
- This includes constant functions.
- $\sqrt[n]{x}$ is continuous if n is odd.
- $\sqrt[n]{x}$ is continuous on $[0, \infty)$ if n is even.
- $\sin (x)$ and $\cos (x)$ are continuous.
- e^{x} and a^{x} are continuous.
- $\ln (x)$ and $\log _{b}(x)$ are continuous on $(0, \infty)$.

You can use all of these without giving any proofs or reasons.

Limit properties

If the limits all exist and are finite, then

- $\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$,
- $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$,
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$,
- $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ if f is a "rive" continuous function.

These all work for $x \rightarrow \infty, x \rightarrow-\infty, x \rightarrow a^{+}$, and $x \rightarrow a^{-}$too!

Continuity

Using the limit rules individually, we have

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{e^{\sin (\pi x)}}{1+x^{2}} & =\frac{\lim _{x \rightarrow 4} e^{\sin (\pi x)}}{\lim _{x \rightarrow 4}\left(1+x^{2}\right)}=\frac{e^{\left(\lim _{x \rightarrow 4} \sin (\pi x x)\right)}}{1+\lim _{x \rightarrow 4} x^{2}} \\
& =\frac{e^{\sin \left(\pi \lim _{x \rightarrow 4} x\right)}}{1+\left(\lim _{x \rightarrow 4} x\right)^{2}}=\frac{e^{\sin (4 \pi)}}{1+4^{2}}=\frac{e^{0}}{1+16}=\frac{1}{17}
\end{aligned}
$$

But we do not need to go into this much detail every time we write the answer to a limit.

Continuity

Fact: if $f(x)$ and $g(x)$ are both continuous, then the

- $\operatorname{sum} f(x)+g(x)$,
- difference $f(x)-g(x)$,
- product $f(x) \cdot g(x)$, and
- composition $f(g(x))$
are all continuous.
- If $g(x)$ is never 0 then the quotient $\frac{f(x)}{g(x)}$ is also continuous.

Example: $\lim _{x \rightarrow 4} \frac{e^{\sin (\pi x)}}{1+x^{2}}=\frac{e^{\sin (4 \pi)}}{1+4^{2}}=\frac{1}{17}$.

Intermediate Value Theorem (IVT)

If f is continuous on $[a, b]$ then for any number Y between $f(a)$ and $f(b)$ there exists a number X between a and b for which $f(X)=Y$.

Example application: Can we find a number $0 \leq x \leq 1$ for which $2^{x}=6 x$ using only a simple calculator ($+-\times \div$)?

- First, does such a number exist?
- Let $f(x)=2^{x}-6 x$. This is continuous on $[0,1]$.
- $f(0)=1$ and $f(1)=-4$.
- Because 0 is between -4 and 1 , the IVT tells us there must be some $0 \leq x \leq 1$ with $f(x)=0$.

Can we find a number $0 \leq x \leq 1$ for which $2^{x}=6 x$ using only a simple calculator?

- Let $f(x)=2^{x}-6 x$. This is continuous!
$f(0.6)=-1.69<0$, so $f(x)=0$ for some x in $[0,0.6]$. $f(0.26)=-0.31<0$, so $f(x)=0$ for some x in $[0,0.26]$.
$f(0.125)=0.34>0$, so $f(x)=0$ for some x in $[0.126,0.26]$.
After more guesses in this way, we can find that x is approximately 0.1901.

Speed (or velocity)

- If you run 114 km in 5 hours, what is your "average speed"?
- If your position in meters after t seconds is

$$
P(t)=\frac{1}{10} t^{2}+2 t,
$$

calculate your "average speed" (in m / s) between $t=2$ and $t=10$.

$$
\frac{P(10)-P(2)}{10-2}=\frac{30-4.4}{8}=3.2 \frac{m}{\mathrm{~s}}
$$

Speed (or velocily)

- If your position after t seconds is

$$
P(t)=\frac{1}{10} t^{2}+2 t,
$$

estimate your "instantaneous speed" when $t=2$.

$$
\begin{aligned}
& \frac{P(2.1)-P(2)}{0.1}=\frac{4.641-4.4}{0.1}=2.41 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \frac{P(2.001)-P(2)}{0.001}=2.4001 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

speed (or velocity)

- If your position after t seconds is

$$
P(t)=\frac{1}{10} t^{2}+2 t,
$$

calculate your "instantaneous speed" exactly when $t=2$.

$$
\lim _{h \rightarrow 2} \frac{P(k)-P(2)}{k-2} \text { or } \lim _{h \rightarrow 0} \frac{P(2+h)-P(2)}{h}
$$

New variable $h=\varepsilon-2$ is the amount of time after 2 sec.

$$
k=2+h
$$

Secant lines and tangent lines

A secant line is a line that intersects a curve at two or more points.

A tangent line to a curve at a point is a line that "touches" the curve at that point (it might or might not intersect the curve again farther away).

After "zooming in" to a picture with a tangent line:

A tangent line at p is very close to the original curve near $x=p$.

The idea of a tangent line is not about the number of intersections.

What is the slope of the tangent line to $y=\frac{x^{2}}{4}$ at point $\left(1, \frac{1}{4}\right) ?$

What is the slope of the tangent line to $y=\frac{x^{2}}{4}$ at point $\left(1, \frac{1}{4}\right) ?$ We can use either of these limils:
\prod_{1} slope $=\lim _{x \rightarrow 1} \frac{\frac{1}{4}(x)^{2}-\frac{1}{4}}{x-1}$

$$
\operatorname{slope} \lim _{h \rightarrow 0} \frac{\frac{1}{4}(1+h)^{2}-\frac{1}{4}}{h}
$$

What is the slope of the tangent line to $y=\frac{x^{2}}{4}$ at point $\left(1, \frac{1}{4}\right)$?
$\lim _{h \rightarrow 0} \frac{\frac{1}{4}(1+h)^{2}-\frac{1}{4}}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(\frac{7}{4}+\frac{2}{4} h+\frac{1}{4} h^{2}\right)-\frac{7}{4}}{h}$
$=\lim _{h \rightarrow 0}\left(\frac{1}{2}+\frac{1}{4} h\right)=\frac{1}{2}$

Velocily, slope, rate of change

- If we think of t as time and $f(t)$ as position, then $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ is velocity when $t=2$.

$=0$

- If we think of x as horizontal and $f(x)$ as vertical, then $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ is the slope of the tangent line to $y=f(x)$ at $x=2$.

- No matter what f represents, $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ is a rate of change of f.

Velocity, slope, rate of change

- No matter what f represents, $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ is a rate of change of f.
- Velocity is the rate of change of position with respect to time.
- Slope is the rate of change of y-position with respect to x-position.
- Acceleration is the rate of change of velocity with respect to time.
- Power is the rate of change of energy with respect to time.
- Current is the rate of change of charge with respect to time.
- Force is the rate of change of work with respect to position.
- Force is the rate of change of momentum with respect to time.
- Electric field is the rate of change of -voltage with respect to position.

Derivalive at a point

The derivative of $f(x)$ at $x=a$ (or the derivative of f at a) is the slope of line through the point $(a, f(a))$ that is tangent to the graph of f.

- $f^{\prime}(a)$ spoken as "F prime of A " or "F prime at A"
- $\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=a}$ spoken as "D F D X at X equals A" or "D F D X when X=A"
- $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=a}$ spoken as "D Y D X at X equals A " or " $\mathrm{D} Y \mathrm{D} X$ when $\mathrm{X}=\mathrm{A}$ "

It is calculated as $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

Derivalive at a point

The derivative of $f(x)$ at $x=a$ (or the derivative of f at a) is calculated as

